::
Bonjour,
Jsxgraph fait le job. Tu pourras aussi analyser la position des points avec le type de réponse jsxgraph.
\title{Loi normale}
\text{A=slib(geo2D/jsxgraph jsxbox,1000 x 500,var brd = JXG.JSXGraph.initBoard('jsxbox',
{axis:false, boundingbox: [-4,0.5,4,-0.05]});
brd.create('arrow',[ [-5,0.00],[4,0.00] ], {strokeColor: 'black', strokeWidth:2,fixed:true});
brd.create('arrow',[ [0,-1],[0,0.5] ], {strokeColor: 'black',fixed:true});
var c = brd.create('functiongraph', [function (x) { return 0.3989422804*Math.pow( 2.718281828,(-0.5*x*x) ); }]);
var pinfA = brd.create('point',[-1.2,0],{name:'a'});
var psupA = brd.create('point',[1,0],{name:'b'});
brd.on('move', function(){
pinfA.moveTo([pinfA.X(),0]);
psupA.moveTo([psupA.X(),0]);
});
var int = brd.create('integral', [[function(){return pinfA.X()},function(){return psupA.X()} ], c],{withLabel: false,fixed:true,fillColor:'blue'});
int.curveLeft.setProperty({visible:false});
int.curveRight.setProperty({visible:false});
for(var i=-4;i<4;i=i+0.5){
brd.create('segment',[ [i,-0.01] , [i,0.01] ],{strokeColor:'black',fixed:true,strokeWidth:1});
brd.create('text',[i-0.2,-0.02,i],{fixed:true});
}
var t1 = brd.create('text',[function(){return (pinfA.X()+psupA.X())/2-0.5;},0.2,'<div style="padding:3px;border-radius:5px;background-color:rgba(255,255,255,0.6);">P(a< X < b)</div>'],{fixed:true});
var t2 = brd.create('text',[-3.5,0.45,function(){return 'P( a < X < b ) = '+int.Value(); }],{strokeColor:'blue'});
)}
\statement{
\A
}