Rev 16457 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
16297 | bpr | 1 | !set titb=Exemple de système d'équations |
2 | !set keyw= |
||
3 | !set datm=20210502 |
||
4 | !set prev= |
||
5 | !set next= |
||
6 | !set upbl=main |
||
7 | !set dat1=19000101 |
||
8 | !set dat2=24000101 |
||
9 | |||
10 | !if $wims_read_parm!=$empty |
||
11 | !goto $wims_read_parm |
||
12 | !endif |
||
13 | !exit |
||
14 | |||
15 | :content |
||
16 | |||
17 | !set tmp0=!randint 1, 5 |
||
18 | |||
19 | !set m_a=$[rint(2*$(tmp0))] |
||
20 | |||
21 | !set tmp0=!randint 1, 5 |
||
22 | |||
23 | !set m_b=$[rint(2*$(tmp0))] |
||
24 | |||
25 | !set tmp0=!randint 25, 50 |
||
26 | |||
27 | !set m_c=$[rint($(tmp0))] |
||
28 | |||
29 | !set m_d=$[rint($m_a+$m_b)] |
||
30 | |||
31 | !set m_L=$[rint(4*$m_c-$m_d)] |
||
32 | |||
33 | !set m_p=$[rint($m_a*$m_b)] |
||
34 | |||
35 | !set m_S=$[rint(4*$m_c)] |
||
36 | |||
37 | !set m_s=$[rint(2*$m_c)] |
||
38 | |||
39 | <p> |
||
40 | On sait que |
||
41 | !insmath x+L+x-\a+L-\b=\L |
||
42 | et on cherche |
||
43 | !insmath x |
||
44 | tel que |
||
45 | !insmath L x -(\b)(\a) |
||
46 | soit maximal. |
||
16457 | bpr | 47 | </p><p> |
16297 | bpr | 48 | On exprime |
49 | !insmath L |
||
50 | en fonction de |
||
51 | !insmath x |
||
17280 | bpr | 52 | :<br> |
16297 | bpr | 53 | |
54 | !insmath 2 L + 2 x - \d = \L |
||
17280 | bpr | 55 | <br> |
16297 | bpr | 56 | |
57 | !insmath 2 L + 2 x = \S |
||
17280 | bpr | 58 | <br> |
16297 | bpr | 59 | |
60 | !insmath L + x = \s |
||
17280 | bpr | 61 | <br> |
16297 | bpr | 62 | |
63 | !insmath L = \s - x |
||
17280 | bpr | 64 | <br> |
16457 | bpr | 65 | </p><p> |
16297 | bpr | 66 | Puis on substitue |
67 | !insmath \s - x |
||
68 | à |
||
69 | !insmath L |
||
70 | dans |
||
71 | !insmath L x -(\b)(\a) |
||
17280 | bpr | 72 | : <br> |
16297 | bpr | 73 | |
74 | !insmath L x -(\b)(\a) = (\s - x)(x) - \p = - x^2 + \s x -\p |
||
17280 | bpr | 75 | <br> |
16297 | bpr | 76 | Ce trinôme a un maximum sur |
16457 | bpr | 77 | !insmath \,\RR |
16297 | bpr | 78 | car le coefficient de |
79 | !insmath x^2 |
||
17280 | bpr | 80 | est négatif.<br> |
16297 | bpr | 81 | Pour 0 et $m_s, le trinôme vaut |
82 | !insmath - \p |
||
16457 | bpr | 83 | donc le maximum de ce trinôme est obtenu |
84 | pour |
||
16297 | bpr | 85 | !insmath \frac{0+\s}{2}=\c |
17280 | bpr | 86 | .<br> |
16297 | bpr | 87 | Ainsi le maximum est obtenu lorsque |
88 | !insmath x=\c |
||
89 | et |
||
90 | !insmath L = \s - x = \s - \c = \c |
||
91 | . |
||
92 | </p> |
||
93 |