Rev 13206 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
13206 | czzmrn | 1 | Corrispondenze e funzioni |
2 | |||
3 | ??, 2018 |
||
4 | 1 |
||
5 | U1 |
||
6 | mathematics, elementary_mathematics |
||
7 | maps,surjectivity,injectivity,image,preimage |
||
8 | Marina, Cazzola |
||
9 | wims@unimib.it |
||
10 | |||
11 | |||
12 | :U1/logic/oefmap.fr |
||
13 | exo=corres1&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
14 | 10 |
||
15 | 1 |
||
16 | Corrispondenze: rappresentazione grafica #1 |
||
17 | Costruire la rappresentazione di una funzione tramite diagrammi. |
||
18 | |||
19 | :U1/logic/oefmap.fr |
||
20 | exo=corres2&confparm1=2&qnum=1&scoredelay=&seedrepeat=2&intro_expert=yes&intro_expow=1&intro_sepow=1&intro_precw=0.9&intro_good=1&intro_sol=1&intro_feed=1&intro_hint=1&intro_qcmpresent=2&intro_check=1&intro_check=2 |
||
21 | 10 |
||
22 | 1 |
||
23 | Corrispondenze: rappresentazione grafica #2 |
||
24 | Costruire la rappresentazione grafica di una corrispondenza tra insiemi e riconoscerne le proprietā. |
||
25 | |||
26 | :U1/set/oeffinmap.en |
||
27 | exo=tablebij&confparm1=2&qnum=1&scoredelay=&seedrepeat=2&intro_expert=yes&intro_expow=1&intro_sepow=1&intro_precw=0.9&intro_good=0&intro_sol=2&intro_feed=1&intro_hint=1&intro_qcmpresent=2&intro_check=1&intro_check=2 |
||
28 | 10 |
||
29 | 1 |
||
30 | Proprietā delle funzioni #1 |
||
31 | Riconoscere se č biunivoca o meno una funzione definita assegnando tramite una tabella le immagini degli elementi del dominio. |
||
32 | |||
33 | :U1/set/oeffinmap.en |
||
34 | exo=tablelem&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
35 | 10 |
||
36 | 1 |
||
37 | Proprietā delle funzioni #2 |
||
38 | Undividuare immagini e contrommagini di vari elementi mediante una funzione data in forma di tabella. |
||
39 | |||
40 | :U1/set/oeffinmap.en |
||
41 | exo=tableimg&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
42 | 10 |
||
43 | 1 |
||
44 | Immagine di una funzione #1 |
||
45 | Individuare l'immagine di una funzione (funzione data in forma di tabella). TODO: l'immagine di f č definita a p. 128. |
||
46 | |||
47 | :U1/set/oeffinmap.en |
||
48 | exo=tablerecip&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
49 | 10 |
||
50 | 1 |
||
51 | Controimmagine #1 |
||
52 | Individuare le controimmagini di un sottoinsieme del codominio tramite una funzione (data in forma di tabella). |
||
53 | |||
54 | :U1/logic/oefmap.fr |
||
55 | exo=free01&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
56 | 10 |
||
57 | 1 |
||
58 | Rappresentazione grafica di una funzione #0 |
||
59 | Definire una funzione tra insiemi finiti tramite la sua rappresentazione grafica. |
||
60 | |||
61 | :U1/logic/oefmap.fr |
||
62 | exo=diagram1&confparm1=2&qnum=1&scoredelay=&seedrepeat=2&intro_expert=yes&intro_expow=1&intro_sepow=1&intro_precw=0.9&intro_good=1&intro_sol=1&intro_feed=1&intro_hint=1&intro_qcmpresent=2&intro_check=1&intro_check=2 |
||
63 | 10 |
||
64 | 1 |
||
65 | Rappresentazione grafica di una funzione #1 |
||
66 | Costruire la rappresentazione grafica di una funzione data. |
||
67 | |||
68 | :U1/logic/oefmap.fr |
||
69 | exo=diagram2&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
70 | 10 |
||
71 | 1 |
||
72 | Rappresentazione grafica di una funzione #2 |
||
73 | Costruire la rappresentazione grafica di una funzione data. |
||
74 | |||
75 | :U1/logic/oefmap.fr |
||
76 | exo=diagram3&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
77 | 10 |
||
78 | 1 |
||
79 | Rappresentazione grafica di una funzione #3 |
||
80 | Costruire la rappresentazione grafica di una funzione data. |
||
81 | |||
17011 | bpr | 82 | :U1/algebra/corresjs.en |
13206 | czzmrn | 83 | difficulty=1&applname=2 |
84 | 10 |
||
85 | 1 |
||
86 | Riconoscere una funzione e le sue proprietā #1 |
||
87 | esercizio dinamico sulla definizione di applicazione. |
||
88 | |||
17011 | bpr | 89 | :U1/algebra/corresjs.en |
13206 | czzmrn | 90 | difficulty=2&applname=2 |
91 | 10 |
||
92 | 1 |
||
93 | Riconoscere una funzione e le sue proprietā #2 |
||
94 | esercizio dinamico sulla definizione di applicazione. |
||
95 | |||
96 | |||
97 | :U1/set/oeffinmap.en |
||
98 | exo=tablesqr&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
99 | 10 |
||
100 | 1 |
||
101 | Composizione di funzioni #1 |
||
102 | Determinare il <em>quadrato</em> di una funzione, individuando le immagini di tutti gli elementi del dominio. |
||
103 | |||
104 | :U1/set/oeffinmap.en |
||
105 | exo=tablecube&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
106 | 10 |
||
107 | 1 |
||
108 | Composizione di funzioni #2 |
||
109 | Determinare il <em>cubo</em> di una funzione, individuando le immagini di tutti gli elementi del dominio. |
||
110 | |||
111 | :U1/set/oeffinmap.en |
||
112 | exo=tableinv&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
113 | 10 |
||
114 | 1 |
||
115 | Composizione di funzioni #3 |
||
116 | Individuare la funzione inversa di una funzione data in forma di tabella. |
||
117 | |||
118 | :U1/logic/oefmap.fr |
||
119 | exo=free11&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
120 | 10 |
||
121 | 1 |
||
122 | Composizione di funzioni: proprietā #1 |
||
123 | Individuare le proprietā (iniettivitā/suriettivitā) di una funzione ottenuta come coposizione di due funzioni. |
||
124 | |||
125 | :U1/logic/oefmap.fr |
||
126 | exo=free21&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
127 | 10 |
||
128 | 1 |
||
129 | Composizione di funzioni: proprietā #2 |
||
130 | Costruire una funzione in modo che la sua composizione con una funzione data sia iniettiva. |
||
131 | |||
132 | :U1/logic/oefmap.fr |
||
133 | exo=free24&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
134 | 10 |
||
135 | 1 |
||
136 | Composizione di funzioni: proprietā #3 |
||
137 | Costruire una funzione in modo che la sua composizione con una funzione data sia iniettiva. |
||
138 | |||
139 | :U1/logic/oefmap.fr |
||
140 | exo=free22&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
141 | 10 |
||
142 | 1 |
||
143 | Composizione di funzioni: proprietā #4 |
||
144 | Costruire una funzione in modo che la sua composizione con una funzione data sia suriettiva. |
||
145 | |||
146 | :U1/logic/oefmap.fr |
||
147 | exo=free25&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
148 | 10 |
||
149 | 1 |
||
150 | Composizione di funzioni: proprietā #5 |
||
151 | Costruire una funzione in modo che la sua composizione con una funzione data sia suriettiva. |
||
152 | |||
153 | :U1/logic/oefmap.fr |
||
154 | exo=free23&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
155 | 10 |
||
156 | 1 |
||
157 | Composizione di funzioni: proprietā #6 |
||
158 | Costruire una funzione in modo che la sua composizione con una funzione data soddisfi la condizione richiesta. |
||
159 | |||
160 | :U1/logic/oefmap.fr |
||
161 | exo=free26&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
162 | 10 |
||
163 | 1 |
||
164 | Composizione di funzioni: proprietā #7 |
||
165 | Costruire una funzione in modo che la sua composizione con una funzione data soddisfi la condizione richiesta. |
||
166 | |||
167 | :U1/logic/oefmap.fr |
||
168 | exo=free31&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
169 | 10 |
||
170 | 1 |
||
171 | Composizione di funzioni: proprietā #8 |
||
172 | Costruire la composizione di alcune funzioni in modo che la funzione ottenuta sia iniettiva. |
||
173 | |||
174 | :U1/logic/oefmap.fr |
||
175 | exo=free32&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
176 | 10 |
||
177 | 1 |
||
178 | Composizione di funzioni: proprietā #9 |
||
179 | Costruire la composizione di alcune funzioni in modo che la funzione ottenuta sia suriettiva. |
||
180 | |||
181 | :U1/logic/oefmap.fr |
||
182 | exo=free33&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
183 | 10 |
||
184 | 1 |
||
185 | Composizione di funzioni: proprietā #10 |
||
186 | Costruire la composizione di alcune funzioni in modo che la funzione ottenuta soddisfi la condizione richiesta. |
||
187 | |||
188 | :U1/set/oeffinmap.en |
||
189 | exo=polylem&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
190 | 10 |
||
191 | 1 |
||
192 | Proprietā delle funzioni (aritmetica modulare) |
||
193 | Individuare immagini e controimmagini (funzione data in forma di polinomio). Richiede di aver affrontato la congruenza modulo n (capitolo 6). |
||
194 | |||
195 | :U1/set/oeffinmap.en |
||
196 | exo=polyimg&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
197 | 10 |
||
198 | 1 |
||
199 | Immagine di una funzione (aritmetica modulare) |
||
200 | Individuare l'immagine di una funzione (funzione data in forma di polinomio). Richiede di aver affrontato la congruenza modulo n (capitolo 6). |
||
201 | |||
202 | :U1/set/oeffinmap.en |
||
203 | exo=polyrecip&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
204 | 10 |
||
205 | 1 |
||
206 | Controimmagine (aritmetica modulare) |
||
207 | Individuare le controimmagini degli elementi di un sottoinsieme del dominio tramite una funzione (data in forma di polinomio). Richiede di aver affrontato la congruenza modulo n (capitolo 6). |
||
208 | |||
209 | :U1/set/oeffinmap.en |
||
210 | exo=polytable&confparm1=2&qnum=1&qcmlevel=1&scoredelay=&seedrepeat=2&intro_presentsol=0&intro_qcmpresent=0&intro_expow=&intro_sepow=&intro_precw=&intro_good=0&intro_expert=yes |
||
211 | 10 |
||
212 | 1 |
||
213 | Costruire una funzione (aritmetica modulare) |
||
214 | Data una funzione, costruire la sua rappresentazione tramite una tabella. Richiede di aver affrontato la congruenza modulo n (capitolo 6). |
||
215 |