Subversion Repositories wimsdev

Rev

Rev 1086 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
33 reyssat 1
 
2
<center><h1>
3
The logo of WIMS
4
</h1>
5
<p>
6
<img src=gifs/logo-160.gif align=center>
7
</center>
8
<p>The curve represents the trace of a point on a disk of radius 1 rotating
9
inside a fixed circle of radius 3. And the deformation of the curve
10
represents what happens when the distance of the point towards the center of
11
the moving disk varies from 0 to infinity.
12
<p>
13
This animated logo is created by the application 
14
!href module=tool/geometry/animtrace Tracés animés
15
 under Wims.
16
<p>
17
<ul>
18
<li>Type of plotting: parametric curve in 2D.
19
<li>Equations:
20
<pre>
21
     x=(1-s)*cos(t+pi*s)+s*cos(2*t)
22
     y=(1-s)*sin(t+pi*s)-s*sin(2*t)
23
</pre>
24
  (where s is the ``sequentiel parameter'' as defined in 
25
  <font color=red>Tracés animés</font>.)
26
<li>Ranges of variables:
27
<pre>
28
     -1&lt;x&lt;1, -1&lt;y&lt;1, 0&lt;t&lt;2*pi.
29
</pre>
30
</ul>
31
You may
32
!href module=tool/geometry/animtrace.en&cmd=new&type=parametric2D&x1=(1-s)*cos(t+pi*s)+s*cos(2*t)&y1=(1-s)*sin(t+pi*s)-s*sin(2*t)&tleft=0&tright=2*pi&xleft=-1&xright=1&yleft=-1&yright=1&special_parm=noshow load directly these settings
33
 into the menu of <font color=red>Tracés animés</font>
34
to plot it yourself.
35
<p>
36
Date of creation 03-27-1998, &copy; XIAO, Gang.
37
<p><hr> <p>
38
<center>
39
!href module=home Back to wims
40
</center>
41