Subversion Repositories wimsdev

Rev

Rev 33 | Rev 1117 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
33 reyssat 1
 
2
<center><h1>
3
Logotip stre¾nika WIMS
4
</h1>
5
<p>
1086 bpr 6
<img src="gifs/logo-160.gif" align=center alt="logo">
33 reyssat 7
</center>
8
<p>
9
The curve represents the trace of a point on a disk of radius 1 rotating
10
inside a fixed circle of radius 3. And the deformation of the curve
11
represents what happens when the distance of the point towards the center of
12
the moving disk varies from 0 to infinity.
13
<p>
14
This animated logo is created by the application 
15
!href module=tool/geometry/animtrace Tracés animés
16
 under Wims.
17
<p>
18
<ul>
19
<li>Type of plotting: parametric curve in 2D.
20
<li>Equations:
21
<pre>
22
     x=(1-s)*cos(t+pi*s)+s*cos(2*t)
23
     y=(1-s)*sin(t+pi*s)-s*sin(2*t)
24
</pre>
25
  (where s is the ``sequentiel parameter'' as defined in 
26
  <font color=red>Tracés animés</font>.)
27
<li>Ranges of variables:
28
<pre>
29
     -1&lt;x&lt;1, -1&lt;y&lt;1, 0&lt;t&lt;2*pi.
30
</pre>
31
</ul>
32
You may
33
!href module=tool/geometry/animtrace.en&cmd=new&type=parametric2D&x1=(1-s)*cos(t+pi*s)+s*cos(2*t)&y1=(1-s)*sin(t+pi*s)-s*sin(2*t)&tleft=0&tright=2*pi&xleft=-1&xright=1&yleft=-1&yright=1&special_parm=noshow load directly these settings
34
 into the menu of <font color=red>Tracés animés</font>
35
to plot it yourself.
36
<p>
37
Date of creation 03-27-1998, &copy; XIAO, Gang.
38
<p><hr> <p>
39
<center>
40
!href module=home Nazaj na zaèetno stran
41
</center>
42