Subversion Repositories wimsdev

Rev

Rev 5765 | Rev 6065 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
6058 obado 1
<div class="wimsbody">
33 reyssat 2
<center><h1>
3
Logotip stre¾nika WIMS
4
</h1>
5
<p>
5765 bpr 6
<img src="gifs/logo-160.gif" align="middle" alt="logo"/>
33 reyssat 7
</center>
8
<p>
9
The curve represents the trace of a point on a disk of radius 1 rotating
10
inside a fixed circle of radius 3. And the deformation of the curve
11
represents what happens when the distance of the point towards the center of
12
the moving disk varies from 0 to infinity.
13
<p>
14
This animated logo is created by the application 
15
!href module=tool/geometry/animtrace Tracés animés
16
 under Wims.
17
<p>
18
<ul>
19
<li>Type of plotting: parametric curve in 2D.
20
<li>Equations:
21
<pre>
22
     x=(1-s)*cos(t+pi*s)+s*cos(2*t)
23
     y=(1-s)*sin(t+pi*s)-s*sin(2*t)
24
</pre>
25
  (where s is the ``sequentiel parameter'' as defined in 
3970 bpr 26
  <font color="red">Tracés animés</font>.)
33 reyssat 27
<li>Ranges of variables:
28
<pre>
29
     -1&lt;x&lt;1, -1&lt;y&lt;1, 0&lt;t&lt;2*pi.
30
</pre>
31
</ul>
32
You may
33
!href module=tool/geometry/animtrace.en&cmd=new&type=parametric2D&x1=(1-s)*cos(t+pi*s)+s*cos(2*t)&y1=(1-s)*sin(t+pi*s)-s*sin(2*t)&tleft=0&tright=2*pi&xleft=-1&xright=1&yleft=-1&yright=1&special_parm=noshow load directly these settings
3970 bpr 34
 into the menu of <font color="red">Tracés animés</font>
33 reyssat 35
to plot it yourself.
36
<p>
37
Date of creation 03-27-1998, &copy; XIAO, Gang.
5765 bpr 38
<p><hr/></p>  <div class="wimscenter">
33 reyssat 39
!href module=home Nazaj na zaèetno stran
1161 bpr 40
</div>
5765 bpr 41
</div>
33 reyssat 42