Rev 2071 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2071 | zjchen | 1 | !goto $wims_read_parm |
2 | |||
3 | :def |
||
4 | title=Parametric to implicit surface |
||
5 | synonyme=implicite equation 3d, 3d implicite equation, parametric to implicit 3D, implicit equation of a space surface |
||
6 | input=list |
||
7 | !exit |
||
8 | |||
9 | :proc |
||
10 | wims_rawmath_variables=u,v |
||
11 | formula=!nonempty item $formula |
||
12 | formula=!rawmath $formula |
||
13 | cnt=!itemcnt $formula |
||
14 | !if $cnt!=3 |
||
15 | error=bad_formula |
||
16 | !exit |
||
17 | !endif |
||
18 | v1=!varlist nofn $formula |
||
19 | v2=!varlist $formula |
||
20 | n1=!itemcnt $v1 |
||
21 | n2=!itemcnt $v2 |
||
22 | !if $n2>$n1 or . isin $formula |
||
23 | result=not_polynomial |
||
24 | !exit |
||
25 | !endif |
||
26 | !if $n1<1 |
||
27 | result=no_parameter |
||
28 | !exit |
||
29 | !endif |
||
30 | v1=!sort nocase items $v1 |
||
31 | w1=!item 1 of $v1 |
||
32 | w2=!item 2 of $v1 |
||
33 | fml=$formula |
||
34 | |||
35 | !distribute items $fml into fx,fy,fz |
||
36 | !distribute items $formula into Fx,Fy,Fz |
||
37 | m2_header=implicit3d = (f1,f2,f3) -> (\ |
||
38 | -- f1 and f2 should be polynomials over QQ in a variable\ |
||
39 | -- t. A string representation of the polynomial\ |
||
40 | -- F(x,y) is returned, where F(f1,f2) = 0.\ |
||
41 | R = QQ[$w1,$w2,x,y,z,h,MonomialSize=>16,MonomialOrder=>Eliminate 2];\ |
||
42 | f = value f1;\ |
||
43 | g = value f2;\ |
||
44 | k = value f3;\ |
||
45 | J = ideal(x-f,y-g,z-k);\ |
||
46 | Jh = homogenize(J,h);\ |
||
47 | M = selectInSubring(1,gens gb Jh);\ |
||
48 | toString substitute(M_(0,0), {h=>1})) |
||
49 | |||
50 | result=!exec m2 implicit3d("$fx","$fy","$fz") |
||
51 | result=!translate # to $\ |
||
52 | $ in $result |
||
3898 | bpr | 53 | |
2071 | zjchen | 54 | # Here I just discard the first two words of the result |
55 | result=!word 3 to -1 of $result |
||
56 | !exit |
||
57 | |||
58 | :output |
||
59 | |||
60 | !if $result=not_polynomial |
||
61 | Sorry, we can only compute equations when the parametric functions are |
||
62 | polynomials of rational coefficients. |
||
63 | !exit |
||
64 | !endif |
||
65 | !if $result=no_parameter |
||
66 | Sorry, but are you sure that you have entered two polynomials of parameter |
||
67 | t as the parametric coordinate functions? |
||
68 | !exit |
||
69 | !endif |
||
70 | |||
71 | The space surface defined by the parametric equations |
||
72 | <p><center> |
||
73 | !htmlmath x = $Fx , y = $Fy , z = $Fz |
||
74 | <p></center> |
||
75 | satisfies the implicit equation |
||
76 | <p><center> |
||
77 | !insmath $result = 0 . |
||
78 | </center> <p> |
||
79 | <small>Computation done by Macaulay 2</small> |
||
80 | |||
81 | !exit |
||
82 |