Subversion Repositories wimsdev

Rev

Rev 8117 | Rev 11288 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 8117 Rev 11287
Line 2... Line 2...
2
Norbert Haider, norbert.haider@univie.ac.at, modified by Ernst-Georg Schmid
2
Norbert Haider, norbert.haider@univie.ac.at, modified by Ernst-Georg Schmid
3
 
3
 
4
:curvecomp
4
:curvecomp
5
Xiao Gang
5
Xiao Gang
6
Compare two curves
6
Compare two curves
7
Input parameters: environment.<br/>  w_curvecomp_1 and w_curvecomp_2: curves to compare, as lists of points.<br/>  w_curvecomp_xrange and w_curvecomp_yrange: list of 2 integers each.<br/>  w_curvecomp_tolerance: Maximal tolerance of distances.
7
Input parameters: environment.<br/> w_curvecomp_1 and w_curvecomp_2: curves to compare, as lists of points.<br/> w_curvecomp_xrange and w_curvecomp_yrange: list of 2 integers each.<br/> w_curvecomp_tolerance: Maximal tolerance of distances.
8
Output: 10 double numbers separated by white spaces.<br/>- Average distance of curve 1 with respect to curve 2.<br/> -  Average distance of curve 2 with respect to curve 1.<br/> -  Maximal distance of curve 1 with respect to curve 2.<br/> -  Maximal distance of curve 2 with respect to curve 1.<br/> -  Proportion of curve 1 close to curve 2.<br/> -  Proportion of curve 2 close to curve 1.<br/> -  Maximal jump of curve 1.<br/> -  Maximal jump of curve 2.<br/> -  Ratio of repetitions found in curve 1.<br/> Number 10: Ratio of repetitions found in curve 2.<br/> Furthermore, words "fnofx" and/or "fnofy" will appear if curve 2   represents the graph of a function of x (and/or y).<br/>  Returns empty if one of the curves is degenerated.
8
Output: 10 double numbers separated by white spaces.<br/>- Average distance of curve 1 with respect to curve 2.<br/> - Average distance of curve 2 with respect to curve 1.<br/> - Maximal distance of curve 1 with respect to curve 2.<br/> - Maximal distance of curve 2 with respect to curve 1.<br/> - Proportion of curve 1 close to curve 2.<br/> - Proportion of curve 2 close to curve 1.<br/> - Maximal jump of curve 1.<br/> - Maximal jump of curve 2.<br/> - Ratio of repetitions found in curve 1.<br/> Number 10: Ratio of repetitions found in curve 2.<br/> Furthermore, words "fnofx" and/or "fnofy" will appear if curve 2 represents the graph of a function of x (and/or y).<br/> Returns empty if one of the curves is degenerated.
9
curvecomp_1=0,92,1,92,2,92,3,92\\curvecomp_2=46,41,48,41,50,45\\curvecomp_tolerance=40\\curvecomp_xrange=11,208\\curvecomp_yrange=0,220
9
curvecomp_1=0,92,1,92,2,92,3,92\\curvecomp_2=46,41,48,41,50,45\\curvecomp_tolerance=40\\curvecomp_xrange=11,208\\curvecomp_yrange=0,220
10
xx
10
xx
11
 
11
 
12
:cyclicode
12
:cyclicode
13
Xiao Gang
13
Xiao Gang
Line 62... Line 62...
62
1,3\\5,1\\3,4\\1,1\\3,1\\4,5
62
1,3\\5,1\\3,4\\1,1\\3,1\\4,5
63
 
63
 
64
:scienceprint
64
:scienceprint
65
J.M. Evers
65
J.M. Evers
66
Prints a number in scientific notation.
66
Prints a number in scientific notation.
67
Usage: !exec scienceprint number,significant_digits,output_type<br />\text{A=wims(exec scienceprint number,significant_digits,output_type )}<br /><ul>output_type can be<li>0 : calculating format : 1.234*10^-4</li><li>1 : html format :1.234&times;10<sup>-4</sup></li><li>2 : latex format : 1.234\times10^{-4}</li><li>3 : prefix format : 1.234&times;10<sup>-1</sup> m</li><li>4 : mathml format : <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mstyle id="wims_mathml" mathsize="110%"><mn>1.234</mn><mo>&times;</mo><msup><mn>10</mn><mn>-4</mn></msup></mstyle></math</li><li>5 : long prefix format : 1.234&times;10<sup>-1</sup> milli</li></ul>
67
Usage: !exec scienceprint number,significant_digits,output_type<br />\text{A=wims(exec scienceprint number,significant_digits,output_type )}<br /><ul>output_type can be<li>0 : calculating format : 1.234*10^-4</li><li>1 : html format :1.234&times;10<sup>-4</sup></li><li>2 : latex format : 1.234\times10^{-4}</li><li>3 : prefix format : 1.234&times;10<sup>-1</sup> m</li><li>4 : mathml format : <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mstyle id="wims_mathml" mathsize="110%"><mn>1.234</mn><mo>&times;</mo><msup><mn>10</mn><mn>-4</mn></msup></mstyle></math></li><li>5 : long prefix format : 1.234&times;10<sup>-1</sup> milli</li></ul>
68
 
68
 
69
:voronoi
69
:voronoi
70
Steve J. Fortune
70
Steve J. Fortune
71
compute Voronoi diagram or Delaunay triangulation. Voronoi reads the standard input for a set of points in the plane and writes either the Voronoi diagram or the Delaunay triangulation to the standard output.
71
compute Voronoi diagram or Delaunay triangulation. Voronoi reads the standard input for a set of points in the plane and writes either the Voronoi diagram or the Delaunay triangulation to the standard output.
72
Each input line should consist of two real numbers, separated by white space.
72
Each input line should consist of two real numbers, separated by white space.
73
If option -t  is present, the Delaunay triangulation is produced. Each output line is a triple 	i j k which are the indices of the three points in a Delaunay triangle.<br/> Points are numbered starting at 0. <br/>If this option is not present, the Voronoi diagram is produced.<br/>  There are four output record types.<br/> 	s a b indicates that an input point at coordinates  	l a b c indicates a line with equation ax + by = c.<br/> 	v a b indicates a vertex at  a b.<br/> 	e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l; with endpoints numbered v1 and v2.<br/>  If v1 or v2 is -1, the line extends to infinity.
73
If option -t is present, the Delaunay triangulation is produced. Each output line is a triple i j k which are the indices of the three points in a Delaunay triangle.<br/> Points are numbered starting at 0. <br/>If this option is not present, the Voronoi diagram is produced.<br/> There are four output record types.<br/> s a b indicates that an input point at coordinates l a b c indicates a line with equation ax + by = c.<br/> 	v a b indicates a vertex at a b.<br/> e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l; with endpoints numbered v1 and v2.<br/> If v1 or v2 is -1, the line extends to infinity.
74
 
74
 
75
-t 5 7\\2 8\\7 6\\3 5\\1 2\\8 1\\4 3\\6 4
75
-t 5 7\\2 8\\7 6\\3 5\\1 2\\8 1\\4 3\\6 4
76
 
76
 
77
:translator
77
:translator
78
Xiao Gang
78
Xiao Gang