Rev 8117 | Rev 11288 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 8117 | Rev 11287 | ||
---|---|---|---|
Line 2... | Line 2... | ||
2 | Norbert Haider, norbert.haider@univie.ac.at, modified by Ernst-Georg Schmid |
2 | Norbert Haider, norbert.haider@univie.ac.at, modified by Ernst-Georg Schmid |
3 | 3 | ||
4 | :curvecomp |
4 | :curvecomp |
5 | Xiao Gang |
5 | Xiao Gang |
6 | Compare two curves |
6 | Compare two curves |
7 | Input parameters: environment.<br/> |
7 | Input parameters: environment.<br/> w_curvecomp_1 and w_curvecomp_2: curves to compare, as lists of points.<br/> w_curvecomp_xrange and w_curvecomp_yrange: list of 2 integers each.<br/> w_curvecomp_tolerance: Maximal tolerance of distances. |
8 | Output: 10 double numbers separated by white spaces.<br/>- Average distance of curve 1 with respect to curve 2.<br/> - |
8 | Output: 10 double numbers separated by white spaces.<br/>- Average distance of curve 1 with respect to curve 2.<br/> - Average distance of curve 2 with respect to curve 1.<br/> - Maximal distance of curve 1 with respect to curve 2.<br/> - Maximal distance of curve 2 with respect to curve 1.<br/> - Proportion of curve 1 close to curve 2.<br/> - Proportion of curve 2 close to curve 1.<br/> - Maximal jump of curve 1.<br/> - Maximal jump of curve 2.<br/> - Ratio of repetitions found in curve 1.<br/> Number 10: Ratio of repetitions found in curve 2.<br/> Furthermore, words "fnofx" and/or "fnofy" will appear if curve 2 represents the graph of a function of x (and/or y).<br/> Returns empty if one of the curves is degenerated. |
9 | curvecomp_1=0,92,1,92,2,92,3,92\\curvecomp_2=46,41,48,41,50,45\\curvecomp_tolerance=40\\curvecomp_xrange=11,208\\curvecomp_yrange=0,220 |
9 | curvecomp_1=0,92,1,92,2,92,3,92\\curvecomp_2=46,41,48,41,50,45\\curvecomp_tolerance=40\\curvecomp_xrange=11,208\\curvecomp_yrange=0,220 |
10 | xx |
10 | xx |
11 | 11 | ||
12 | :cyclicode |
12 | :cyclicode |
13 | Xiao Gang |
13 | Xiao Gang |
Line 62... | Line 62... | ||
62 | 1,3\\5,1\\3,4\\1,1\\3,1\\4,5 |
62 | 1,3\\5,1\\3,4\\1,1\\3,1\\4,5 |
63 | 63 | ||
64 | :scienceprint |
64 | :scienceprint |
65 | J.M. Evers |
65 | J.M. Evers |
66 | Prints a number in scientific notation. |
66 | Prints a number in scientific notation. |
67 | Usage: !exec scienceprint number,significant_digits,output_type<br />\text{A=wims(exec scienceprint number,significant_digits,output_type )}<br /><ul>output_type can be<li>0 : calculating format : 1.234*10^-4</li><li>1 : html format :1.234×10<sup>-4</sup></li><li>2 : latex format : 1.234\times10^{-4}</li><li>3 : prefix format : 1.234×10<sup>-1</sup> m</li><li>4 : mathml format : <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mstyle id="wims_mathml" mathsize="110%"><mn>1.234</mn><mo>×</mo><msup><mn>10</mn><mn>-4</mn></msup></mstyle></math</li><li>5 : long prefix format : 1.234×10<sup>-1</sup> milli</li></ul> |
67 | Usage: !exec scienceprint number,significant_digits,output_type<br />\text{A=wims(exec scienceprint number,significant_digits,output_type )}<br /><ul>output_type can be<li>0 : calculating format : 1.234*10^-4</li><li>1 : html format :1.234×10<sup>-4</sup></li><li>2 : latex format : 1.234\times10^{-4}</li><li>3 : prefix format : 1.234×10<sup>-1</sup> m</li><li>4 : mathml format : <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mstyle id="wims_mathml" mathsize="110%"><mn>1.234</mn><mo>×</mo><msup><mn>10</mn><mn>-4</mn></msup></mstyle></math></li><li>5 : long prefix format : 1.234×10<sup>-1</sup> milli</li></ul> |
68 | 68 | ||
69 | :voronoi |
69 | :voronoi |
70 | Steve J. Fortune |
70 | Steve J. Fortune |
71 | compute Voronoi diagram or Delaunay triangulation. Voronoi reads the standard input for a set of points in the plane and writes either the Voronoi diagram or the Delaunay triangulation to the standard output. |
71 | compute Voronoi diagram or Delaunay triangulation. Voronoi reads the standard input for a set of points in the plane and writes either the Voronoi diagram or the Delaunay triangulation to the standard output. |
72 | Each input line should consist of two real numbers, separated by white space. |
72 | Each input line should consist of two real numbers, separated by white space. |
73 | If option -t |
73 | If option -t is present, the Delaunay triangulation is produced. Each output line is a triple i j k which are the indices of the three points in a Delaunay triangle.<br/> Points are numbered starting at 0. <br/>If this option is not present, the Voronoi diagram is produced.<br/> There are four output record types.<br/> s a b indicates that an input point at coordinates l a b c indicates a line with equation ax + by = c.<br/> v a b indicates a vertex at a b.<br/> e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l; with endpoints numbered v1 and v2.<br/> If v1 or v2 is -1, the line extends to infinity. |
74 | 74 | ||
75 | -t 5 7\\2 8\\7 6\\3 5\\1 2\\8 1\\4 3\\6 4 |
75 | -t 5 7\\2 8\\7 6\\3 5\\1 2\\8 1\\4 3\\6 4 |
76 | 76 | ||
77 | :translator |
77 | :translator |
78 | Xiao Gang |
78 | Xiao Gang |