Rev 3282 | Rev 3465 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 3282 | Rev 3460 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | :Êýѧº¯Êý |
1 | :Êýѧº¯Êý |
2 | :º¯Êý,Àý,Ч¹û |
2 | :º¯Êý,Àý,Ч¹û |
3 | :evalue |
3 | :evalue( ) |
4 | evalue(x^2+sin(y),x=3,y=4) |
4 | evalue(x^2+sin(y),x=3,y=4) |
5 | º¯Êý x^2+sin(y)ÔÚ x=3, y=4 ´¦¸³Öµ |
5 | º¯Êý x^2+sin(y)ÔÚ x=3, y=4 ´¦¸³Öµ |
6 | :solve |
6 | :solve( ) |
7 | solve(x^3-3*x+1,x=0..1) |
7 | solve(x^3-3*x+1,x=0..1) |
8 | x^3-3x+1 ÔÚ 0 Óë 1 ¼äµÄµ¥¸ù |
8 | x^3-3x+1 ÔÚ 0 Óë 1 ¼äµÄµ¥¸ù |
9 | :simplify |
9 | :simplify( ) |
10 | simplify(x^5*y^3/x^2/y) |
10 | simplify(x^5*y^3/x^2/y) |
11 | »¯¼ò: x<sup>3</sup>y<sup>2</sup> |
11 | »¯¼ò: x<sup>3</sup>y<sup>2</sup> |
12 | :diff |
12 | :diff( ) |
13 | diff(sin(x)+cos(y),x) |
13 | diff(sin(x)+cos(y),x) |
14 | sin(x)+cos(y) ¹ØÓÚ x µÄµ¼Êý |
14 | sin(x)+cos(y) ¹ØÓÚ x µÄµ¼Êý |
15 | :int |
15 | :int( , ) |
16 | int(x^2+3*x+1,x) |
16 | int(x^2+3*x+1,x) |
17 | x^2+3*x+1 µÄÔº¯Êý, ³£ÊýÏî²»¶¨ |
17 | x^2+3*x+1 µÄÔº¯Êý, ³£ÊýÏî²»¶¨ |
18 | :int |
18 | :int( , = .. ) |
19 | int(t^2+3*t+1,t=0..1) |
19 | int(t^2+3*t+1,t=0..1) |
20 | x^2+3*x+1 ´Ó 0 µ½ 1 µÄÊýÖµ»ý·Ö |
20 | x^2+3*x+1 ´Ó 0 µ½ 1 µÄÊýÖµ»ý·Ö |
21 | :det |
21 | :det( ) |
22 | det(\mat) |
22 | det(\mat) |
23 | ¾ØÕó \mat µÄÐÐÁÐʽ |
23 | ¾ØÕó \mat µÄÐÐÁÐʽ |
24 | 24 | ||
25 | :sin tg tan sec (1/sin) cot cotan cotan ctg csc (1/cos) |
- | |
26 | - | ||
27 |
|
25 | :abs( ) |
28 | :acos acos arccos acos arcsin asin arctan atan arctg atan |
- | |
29 | - | ||
30 |
|
26 | \real{a=abs(-32)} |
31 |
|
27 | absolute value (equivalent : fabs( )) |
32 | - | ||
33 | Ë«Çúº¯Êý |
- | |
34 | - | ||
35 | - | ||
36 | :Argch acosh argch Argsh asinh argsh Argth atanh argth |
- | |
37 | - | ||
38 | ·´Ë«Çúº¯Êý |
- | |
39 | :sqrt |
28 | :sqrt( ) |
40 | \real{a=sqrt(32)} |
29 | \real{a=sqrt(32)} |
41 | ƽ·½¸ù |
30 | ƽ·½¸ù |
42 | :binomial |
31 | :binomial( , ) |
43 | \integer{a=binomial(9,3)} |
32 | \integer{a=binomial(9,3)} |
44 | ¶þÏîʽϵÊý (ÓÃÓÚСÓÚ 10^7 µÄÊý, ·ñÔòÀûÓà pari µÄº¯Êý \text{a=pari(binomial(50,10))} |
33 | ¶þÏîʽϵÊý (ÓÃÓÚСÓÚ 10^7 µÄÊý, ·ñÔòÀûÓà pari µÄº¯Êý \text{a=pari(binomial(50,10))} |
45 | :ceil |
34 | :ceil( ) |
46 | \real{a=ceil(3.4)} |
35 | \real{a=ceil(3.4)} |
47 | ´óÓÚµÈÓÚ´ËÊýµÄ×îСÕûÊý |
36 | ´óÓÚµÈÓÚ´ËÊýµÄ×îСÕûÊý |
48 | :floor |
37 | :floor( ) |
49 | \real{a=floor(3.4)} |
38 | \real{a=floor(3.4)} |
50 | СÓÚµÈÓÚ´ËÊýµÄ×î´óÕûÊý |
39 | СÓÚµÈÓÚ´ËÊýµÄ×î´óÕûÊý |
51 | :rint |
40 | :rint( ) |
52 | \real{a=rint(3.4)} |
41 | \real{a=rint(3.4)} |
53 | ×î½Ó½üµÄÕûÊý |
42 | ×î½Ó½üµÄÕûÊý (equivalent : round( )) |
54 | :e |
43 | :e |
55 | \real{a=e^2} |
44 | \real{a=e^2} |
56 | Êýѧ³£Êý $m_e |
45 | Êýѧ³£Êý $m_e (equivalent : E) |
57 | :erf |
46 | :erf( ) |
- | 47 | \real{a=erf(3.4)} |
|
- | 48 | Function erf |
|
58 | :erfc |
49 | :erfc( ) |
- | 50 | \real{a=erfc(3.4)} |
|
- | 51 | Function erfc |
|
- | 52 | :Euler |
|
59 |
|
53 | \real{a=Euler} |
- | 54 | Euler constante (equivalent EULER euler) |
|
60 | :exp |
55 | :exp( ) |
- | 56 | \real{a=exp(4)} |
|
- | 57 | exponential |
|
61 | :factorial |
58 | :factorial( ) |
62 | \integer{a=factorial(4)} |
59 | \integer{a=factorial(4)} |
63 | ½×³Ë |
60 | ½×³Ë |
64 | :Inf |
61 | :Inf |
65 | \real{a=Inf + 3} |
62 | \real{a=Inf + 3} |
66 | ÎÞÇî´ó |
63 | ÎÞÇî´ó |
67 | :gcd |
64 | :gcd( , ) |
68 | \integer{a=gcd(4,6)} |
65 | \integer{a=gcd(4,6)} |
69 | Á½¸öÕûÊýµÄ×î´ó¹«Ô¼Êý |
66 | Á½¸öÕûÊýµÄ×î´ó¹«Ô¼Êý |
70 | :lcm |
67 | :lcm( , ) |
71 | \integer{a=lcm(4,6)} |
68 | \integer{a=lcm(4,6)} |
72 | Á½¸öÕûÊýµÄ×îС¹«±¶Êý |
69 | Á½¸öÕûÊýµÄ×îС¹«±¶Êý |
73 | :max |
70 | :max( , ) |
74 | \real{a=max(4,6)} |
71 | \real{a=max(4,6)} |
75 | Á½ÊýµÄ´óÕß |
72 | Á½ÊýµÄ´óÕß |
76 | :min |
73 | :min( , ) |
77 | \real{a=gcd(4,6)} |
74 | \real{a=gcd(4,6)} |
78 | Á½ÊýµÄСÕß |
75 | Á½ÊýµÄСÕß |
79 | :lg |
76 | :lg( ) |
80 | \real{a=log10(10^4)} |
77 | \real{a=log10(10^4)} |
81 | ³£ÓöÔÊý |
78 | ³£ÓöÔÊý (equivalent : log10) |
82 | :lgamma |
79 | :lgamma( ) |
83 | \real{a=lgamma(e^(24))} |
80 | \real{a=lgamma(e^(24))} |
84 | Gamma º¯ÊýµÄ¶ÔÊý |
81 | Gamma º¯ÊýµÄ¶ÔÊý |
85 | :ln |
82 | :ln( ) |
86 | \real{a=ln(e^4)} |
83 | \real{a=ln(e^4)} |
87 | ×ÔÈ»¶ÔÊý |
84 | ×ÔÈ»¶ÔÊý (equivalent : log) |
88 | :log2 |
85 | :log2( ) |
89 | \real{a=log2(2^4)} |
86 | \real{a=log2(2^4)} |
90 | ÒÔ 2 Ϊµ×µÄ¶ÔÊý |
87 | ÒÔ 2 Ϊµ×µÄ¶ÔÊý |
91 | :pow |
88 | :pow( , ) |
92 | \real{a=pow(3,0.6)} |
89 | \real{a=pow(3,0.6)} |
93 | È¡³ËÃÝ 3^0.6 |
90 | È¡³ËÃÝ 3^0.6 |
94 | :sgn |
91 | :sgn( ) |
95 | \integer{a=sign(-4)} |
92 | \integer{a=sign(-4)} |
96 | È¡·ûºÅ |
93 | È¡·ûºÅ (equivalent : sign) |
97 | :PI |
94 | :PI |
98 | \real{a=sin(Pi)} |
95 | \real{a=sin(Pi)} |
99 | Ô²ÖÜÂÊ $m_pi |
96 | Ô²ÖÜÂÊ $m_pi (equivalent : Pi, pi) |
- | 97 | :sin |
|
- | 98 | sin(3) |
|
- | 99 | Èý½Çº¯Êý (other functions : tg tan sec (1/sin) cot cotan cotan ctg csc (1/cos)) |
|
- | 100 | :acos |
|
- | 101 | acos(0.5) |
|
- | 102 | ·´Èý½Çº¯Êý |
|
- | 103 | :sh |
|
- | 104 | sh(4) |
|
- | 105 | Ë«Çúº¯Êý (other functions : sh sinh tanh tanh th ch cosh coth cotanh) |
|
- | 106 | ||
- | 107 | :Argch |
|
- | 108 | Argch(4) |
|
- | 109 | ·´Ë«Çúº¯Êý (other functions : Argch acosh argch Argsh asinh argsh Argth atanh argth) |