Rev 3460 | Rev 4654 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 3460 | Rev 3465 | ||
---|---|---|---|
Line 22... | Line 22... | ||
22 | det(\mat) |
22 | det(\mat) |
23 | ¾ØÕó \mat µÄÐÐÁÐʽ |
23 | ¾ØÕó \mat µÄÐÐÁÐʽ |
24 | 24 | ||
25 | :abs( ) |
25 | :abs( ) |
26 | \real{a=abs(-32)} |
26 | \real{a=abs(-32)} |
27 |
|
27 | ¾ø¶ÔÖµ (ͬ : fabs( )) |
28 | :sqrt( ) |
28 | :sqrt( ) |
29 | \real{a=sqrt(32)} |
29 | \real{a=sqrt(32)} |
30 | ƽ·½¸ù |
30 | ƽ·½¸ù |
31 | :binomial( , ) |
31 | :binomial( , ) |
32 | \integer{a=binomial(9,3)} |
32 | \integer{a=binomial(9,3)} |
Line 43... | Line 43... | ||
43 | :e |
43 | :e |
44 | \real{a=e^2} |
44 | \real{a=e^2} |
45 | Êýѧ³£Êý $m_e (equivalent : E) |
45 | Êýѧ³£Êý $m_e (equivalent : E) |
46 | :erf( ) |
46 | :erf( ) |
47 | \real{a=erf(3.4)} |
47 | \real{a=erf(3.4)} |
48 |
|
48 | º¯Êý erf |
49 | :erfc( ) |
49 | :erfc( ) |
50 | \real{a=erfc(3.4) |
50 | \real{a=erfc(3.4) |
51 |
|
51 | º¯Êý erfc |
52 | :Euler |
52 | :Euler |
53 | \real{a=Euler} |
53 | \real{a=Euler} |
54 | Euler |
54 | Euler ³£Êý (ͬ EULER euler) |
55 | :exp( ) |
55 | :exp( ) |
56 | \real{a=exp(4)} |
56 | \real{a=exp(4)} |
57 |
|
57 | Ö¸Êýº¯Êý |
58 | :factorial( ) |
58 | :factorial( ) |
59 | \integer{a=factorial(4)} |
59 | \integer{a=factorial(4)} |
60 | ½×³Ë |
60 | ½×³Ë |
61 | :Inf |
61 | :Inf |
62 | \real{a=Inf + 3} |
62 | \real{a=Inf + 3} |
Line 73... | Line 73... | ||
73 | :min( , ) |
73 | :min( , ) |
74 | \real{a=gcd(4,6)} |
74 | \real{a=gcd(4,6)} |
75 | Á½ÊýµÄСÕß |
75 | Á½ÊýµÄСÕß |
76 | :lg( ) |
76 | :lg( ) |
77 | \real{a=log10(10^4)} |
77 | \real{a=log10(10^4)} |
78 | ³£ÓöÔÊý ( |
78 | ³£ÓöÔÊý (ͬ : log10) |
79 | :lgamma( ) |
79 | :lgamma( ) |
80 | \real{a=lgamma(e^(24))} |
80 | \real{a=lgamma(e^(24))} |
81 | Gamma º¯ÊýµÄ¶ÔÊý |
81 | Gamma º¯ÊýµÄ¶ÔÊý |
82 | :ln( ) |
82 | :ln( ) |
83 | \real{a=ln(e^4)} |
83 | \real{a=ln(e^4)} |
84 | ×ÔÈ»¶ÔÊý ( |
84 | ×ÔÈ»¶ÔÊý (ͬ : log) |
85 | :log2( ) |
85 | :log2( ) |
86 | \real{a=log2(2^4)} |
86 | \real{a=log2(2^4)} |
87 | ÒÔ 2 Ϊµ×µÄ¶ÔÊý |
87 | ÒÔ 2 Ϊµ×µÄ¶ÔÊý |
88 | :pow( , ) |
88 | :pow( , ) |
89 | \real{a=pow(3,0.6)} |
89 | \real{a=pow(3,0.6)} |
90 | È¡³ËÃÝ 3^0.6 |
90 | È¡³ËÃÝ 3^0.6 |
91 | :sgn( ) |
91 | :sgn( ) |
92 | \integer{a=sign(-4)} |
92 | \integer{a=sign(-4)} |
93 | È¡·ûºÅ ( |
93 | È¡·ûºÅ (ͬ : sign) |
94 | :PI |
94 | :PI |
95 | \real{a=sin(Pi)} |
95 | \real{a=sin(Pi)} |
96 | Ô²ÖÜÂÊ $m_pi ( |
96 | Ô²ÖÜÂÊ $m_pi (ͬ : Pi, pi) |
97 | :sin |
97 | :sin |
98 | sin(3) |
98 | sin(3) |
99 | Èý½Çº¯Êý ( |
99 | Èý½Çº¯Êý (ÆäËüº¯ÊýÓÐ : tg tan sec (1/sin) cot cotan cotan ctg csc (1/cos)) |
100 | :acos |
100 | :acos |
101 | acos(0.5) |
101 | acos(0.5) |
102 | ·´Èý½Çº¯Êý |
102 | ·´Èý½Çº¯Êý |
103 | :sh |
103 | :sh |
104 | sh(4) |
104 | sh(4) |
105 | Ë«Çúº¯Êý ( |
105 | Ë«Çúº¯Êý (ÆäËüº¯ÊýÓÐ : sh sinh tanh tanh th ch cosh coth cotanh) |
106 | 106 | ||
107 | :Argch |
107 | :Argch |
108 | Argch(4) |
108 | Argch(4) |
109 | ·´Ë«Çúº¯Êý ( |
109 | ·´Ë«Çúº¯Êý (ÆäËüº¯ÊýÓÐ : Argch acosh argch Argsh asinh argsh Argth atanh argth) |