Rev 3282 | Rev 4654 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 3282 | Rev 3460 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | :Mathematical functions |
1 | :Mathematical functions |
2 | :Function,Example,Effect |
2 | :Function,Example,Effect |
3 | :evalue |
3 | :evalue( ) |
4 | evalue(x^2+sin(y),x=3,y=4) |
4 | evalue(x^2+sin(y),x=3,y=4) |
5 | evaluation of the function x^2+sin(y), for x=3, y=4 |
5 | evaluation of the function x^2+sin(y), for x=3, y=4 |
6 | :solve |
6 | :solve( ) |
7 | solve(x^3-3*x+1,x=0..1) |
7 | solve(x^3-3*x+1,x=0..1) |
8 | the simple root of x^3-3x+1 between 0 and 1 |
8 | the simple root of x^3-3x+1 between 0 and 1 |
9 | :simplify |
9 | :simplify( ) |
10 | simplify(x^5*y^3*x^2/y) |
10 | simplify(x^5*y^3*x^2/y) |
11 | simplified expression: x<sup>7</sup>y<sup>2</sup> |
11 | simplified expression: x<sup>7</sup>y<sup>2</sup> |
12 | :diff |
12 | :diff( ) |
13 | diff(sin(x)+cos(y),x) |
13 | diff(sin(x)+cos(y),x) |
14 | the derivative of sin(x)+cos(y) with respect to x |
14 | the derivative of sin(x)+cos(y) with respect to x |
15 | :int |
15 | :int( , ) |
16 | int(x^2+3*x+1,x) |
16 | int(x^2+3*x+1,x) |
17 | anti-derivative of x^2+3*x+1,<br> the constant term being undertermined |
17 | anti-derivative of x^2+3*x+1,<br> the constant term being undertermined |
18 | :int |
18 | :int( , = .. ) |
19 | int(t^2+3*t+1,t=0..1) |
19 | int(t^2+3*t+1,t=0..1) |
20 | the numerical integration of x^2+3*x+1, from 0 to 1 |
20 | the numerical integration of x^2+3*x+1, from 0 to 1 |
21 | :det |
21 | :det( ) |
22 | det(\mat) |
22 | det(\mat) |
23 | determinant of the matrix \mat |
23 | determinant of the matrix \mat |
24 | 24 | ||
25 | :sin tg tan sec (1/sin) cot cotan cotan ctg csc (1/cos) |
- | |
26 | - | ||
27 | fonctions trigonométriques |
- | |
28 | :acos acos arccos acos arcsin asin arctan atan arctg atan |
- | |
29 | - | ||
30 | fonctions trigonométriques réciproques |
- | |
31 | :sh sinh tanh tanh th ch cosh coth cotanh |
- | |
32 | 25 | :abs( ) |
|
33 |
|
26 | \real{a=abs(-32)} |
34 | - | ||
35 | - | ||
36 | :Argch acosh argch Argsh asinh argsh Argth atanh argth |
- | |
37 | - | ||
38 |
|
27 | absolute value (equivalent : fabs( )) |
39 | :sqrt |
28 | :sqrt( ) |
40 | \real{a=sqrt(32)} |
29 | \real{a=sqrt(32)} |
41 |
|
30 | square root |
42 | :binomial |
31 | :binomial( , ) |
43 | \integer{a=binomial(9,3)} |
32 | \integer{a=binomial(9,3)} |
44 | le coefficient binomial (pour des coefficients inférieurs à 10^7 sinon |
33 | le coefficient binomial (pour des coefficients inférieurs à 10^7 sinon utiliser la fonction de pari \text{a=pari(binomial(50,10))} |
45 | utiliser la fonction de pari \text{a=pari(binomial(50,10))} |
- | |
46 | :ceil |
34 | :ceil( ) |
47 | \real{a=ceil(3.4)} |
35 | \real{a=ceil(3.4)} |
48 | le plus petit entier supérieur |
36 | le plus petit entier supérieur |
49 | :floor |
37 | :floor( ) |
50 | \real{a=floor(3.4)} |
38 | \real{a=floor(3.4)} |
51 | le plus grand entier inférieur |
39 | le plus grand entier inférieur |
52 | :rint |
40 | :rint( ) |
53 | \real{a=rint(3.4)} |
41 | \real{a=rint(3.4)} |
54 | closest integer |
42 | closest integer (equivalent : round( )) |
55 | :e |
43 | :e |
56 | \real{a=e^2} |
44 | \real{a=e^2} |
57 | constante mathématique $m_e |
45 | constante mathématique $m_e (equivalent : E) |
58 | :erf |
46 | :erf( ) |
- | 47 | \real{a=erf(3.4)} |
|
- | 48 | Function erf |
|
59 | :erfc |
49 | :erfc( ) |
- | 50 | \real{a=erfc(3.4)} |
|
- | 51 | Function erfc |
|
- | 52 | :Euler |
|
60 |
|
53 | \real{a=Euler} |
- | 54 | Euler constante (equivalent EULER euler) |
|
61 | :exp |
55 | :exp( ) |
- | 56 | \real{a=exp(4)} |
|
- | 57 | exponential |
|
62 | :factorial |
58 | :factorial( ) |
63 | \integer{a=factorial(4)} |
59 | \integer{a=factorial(4)} |
64 |
|
60 | factorial |
65 | :Inf |
61 | :Inf |
66 | \real{a=Inf + 3} |
62 | \real{a=Inf + 3} |
67 |
|
63 | infinite |
68 | :gcd |
64 | :gcd( , ) |
69 | \integer{a=gcd(4,6)} |
65 | \integer{a=gcd(4,6)} |
70 | pgcd de deux entiers |
66 | pgcd de deux entiers |
71 | :lcm |
67 | :lcm( , ) |
72 | \integer{a=lcm(4,6)} |
68 | \integer{a=lcm(4,6)} |
73 | ppcm de deux entiers |
69 | ppcm de deux entiers |
74 | :max |
70 | :max( , ) |
75 | \real{a=max(4,6)} |
71 | \real{a=max(4,6)} |
76 | maximum de deux nombres |
72 | maximum de deux nombres |
77 | :min |
73 | :min( , ) |
78 | \real{a=gcd(4,6)} |
74 | \real{a=gcd(4,6)} |
79 | minimum de deux nombres |
75 | minimum de deux nombres |
80 | :lg |
76 | :lg( ) |
81 | \real{a=log10(10^4)} |
77 | \real{a=log10(10^4)} |
82 | log en base 10 |
78 | log en base 10 (equivalent : log10) |
83 | :lgamma |
79 | :lgamma( ) |
84 | \real{a=lgamma(e^(24))} |
80 | \real{a=lgamma(e^(24))} |
85 | log de la fonction Gamma |
81 | log de la fonction Gamma |
86 | :ln |
82 | :ln( ) |
87 | \real{a=ln(e^4)} |
83 | \real{a=ln(e^4)} |
88 | log népérien |
84 | log népérien (equivalent : log) |
89 | :log2 |
85 | :log2( ) |
90 | \real{a=log2(2^4)} |
86 | \real{a=log2(2^4)} |
91 | log en base 2 |
87 | log en base 2 |
92 | :pow |
88 | :pow( , ) |
93 | \real{a=pow(3,0.6)} |
89 | \real{a=pow(3,0.6)} |
94 | puissance, équivalent à |
90 | puissance, équivalent à 3^0.6 |
95 | :sgn |
91 | :sgn( ) |
96 | \integer{a=sign(-4)} |
92 | \integer{a=sign(-4)} |
97 |
|
93 | sign (equivalent : sign) |
98 | :PI |
94 | :PI |
99 | \real{a=sin(Pi)} |
95 | \real{a=sin(Pi)} |
100 |
|
96 | mathematical constant $m_pi (equivalent : Pi, pi) |
- | 97 | :sin |
|
- | 98 | sin(3) |
|
- | 99 | fonctions trigonométriques (other functions : tg tan sec (1/sin) cot cotan cotan ctg csc (1/cos)) |
|
- | 100 | :acos |
|
- | 101 | acos(0.5) |
|
- | 102 | fonctions trigonométriques réciproques (other functions : acos arccos acos arcsin asin arctan atan arctg atan) |
|
- | 103 | :sh |
|
- | 104 | sh(4) |
|
- | 105 | fonctions hyperboliques (other functions : sh sinh tanh tanh th ch cosh coth cotanh) |
|
- | 106 | ||
- | 107 | :Argch |
|
- | 108 | Argch(4) |
|
- | 109 | fonctions hyperboliques réciproques (other functions : Argch acosh argch Argsh asinh argsh Argth atanh argth) |