Rev 5947 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 5947 | Rev 6133 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | < |
1 | <h3>Random parameters in an interactive exercise</h3> |
2 | 2 | ||
3 | The use of random parameters makes your exercise much more interesting, |
3 | The use of random parameters makes your exercise much more interesting, |
4 | because it will be a different exercise each time it is requested. |
4 | because it will be a different exercise each time it is requested. |
5 | <p> |
5 | <p> |
6 | For example, the following line defines a parameter under the name of |
6 | For example, the following line defines a parameter under the name of |
Line 39... | Line 39... | ||
39 | $table_header |
39 | $table_header |
40 | <caption>Some other examples of parameters |
40 | <caption>Some other examples of parameters |
41 | !href cmd=help&special_parm=$special_parm,oefparm#list [complete list] |
41 | !href cmd=help&special_parm=$special_parm,oefparm#list [complete list] |
42 | </caption> |
42 | </caption> |
43 | $table_hdtr<th>Definition</th><th>Effect</th></tr> |
43 | $table_hdtr<th>Definition</th><th>Effect</th></tr> |
44 | $table_tr<td |
44 | $table_tr<td class="tt wims_code_words">\real{x=random(-5..5)} |
45 | </td><td>\x will be a random real number<br/>between -5 and 5 |
45 | </td><td>\x will be a random real number<br/>between -5 and 5 |
46 | </td></tr> |
46 | </td></tr> |
47 | $table_tr<td |
47 | $table_tr<td class="tt wims_code_words">\real{a=random(-5,-3,0.3,4)} |
48 | </td><td>\a will be a real number taken randomly<br/>among -5,-3,0.3 and 4 |
48 | </td><td>\a will be a real number taken randomly<br/>among -5,-3,0.3 and 4 |
49 | </td></tr> |
49 | </td></tr> |
50 | $table_tr<td |
50 | $table_tr<td class="tt wims_code_words">\complex{z=(1+2*i)^3} |
51 | </td><td>\z will be the complex number (1+2*i)^3 |
51 | </td><td>\z will be the complex number (1+2*i)^3 |
52 | </td></tr> |
52 | </td></tr> |
53 | $table_tr<td |
53 | $table_tr<td class="tt wims_code_words">\text{sign=random(+,-)} |
54 | </td><td>\sign will be a random sign: + ou - |
54 | </td><td>\sign will be a random sign: + ou - |
55 | </td></tr> |
55 | </td></tr> |
56 | $table_tr<td |
56 | $table_tr<td class="tt wims_code_words">\integer{n=3*exp(\a)} |
57 | </td><td>\n will be the closest integer to 3*e<sup>\a</sup> <br/>(it depends on |
57 | </td><td>\n will be the closest integer to 3*e<sup>\a</sup> <br/>(it depends on |
58 | the value of \a) |
58 | the value of \a) |
59 | </td></tr> |
59 | </td></tr> |
60 | $table_tr<td |
60 | $table_tr<td class="tt wims_code_words">\function{f=random<br/> (x^2+1,sin(x),log(x))} |
61 | </td><td>\f will be a random function: either x^2+1,<br/>or sin(x), or |
61 | </td><td>\f will be a random function: either x^2+1,<br/>or sin(x), or |
62 | log(x) |
62 | log(x) |
63 | </td></tr> |
63 | </td></tr> |
64 | $table_tr<td |
64 | $table_tr<td class="tt wims_code_words">\real{a=evalue(x^2+sin(y),x=3,y=4)} |
65 | </td><td>Evaluation of the function x^2+sin(y),<br/> |
65 | </td><td>Evaluation of the function x^2+sin(y),<br/> |
66 | for x=3, y=4 |
66 | for x=3, y=4 |
67 | </td></tr> |
67 | </td></tr> |
68 | $table_tr<td |
68 | $table_tr<td class="tt wims_code_words">\real{r=solve(x^3-3*x+1,x=0..1)} |
69 | </td><td>\r will the the simple root of x^3-3x+1 between 0 and 1 |
69 | </td><td>\r will the the simple root of x^3-3x+1 between 0 and 1 |
70 | </td></tr> |
70 | </td></tr> |
71 | $table_tr<td |
71 | $table_tr<td class="tt wims_code_words">\function{h=simplify(x^5*y^3*x^2/y)} |
72 | </td><td>Simplified expression: x<sup>7</sup>y<sup>2</sup> |
72 | </td><td>Simplified expression: x<sup>7</sup>y<sup>2</sup> |
73 | </td></tr> |
73 | </td></tr> |
74 | $table_tr<td |
74 | $table_tr<td class="tt wims_code_words">\function{g=diff(sin(x)+cos(y),x)} |
75 | </td><td>\g will the the derivative of sin(x)+cos(y) with respect to x |
75 | </td><td>\g will the the derivative of sin(x)+cos(y) with respect to x |
76 | </td></tr> |
76 | </td></tr> |
77 | $table_tr<td |
77 | $table_tr<td class="tt wims_code_words">\function{F=int(x^2+3*x+1,x)} |
78 | </td><td>\F will an antiderivative of x^2+3*x+1,<br/> |
78 | </td><td>\F will an antiderivative of x^2+3*x+1,<br/> |
79 | the constant term being not garanteed to be always the same |
79 | the constant term being not garanteed to be always the same |
80 | !!$table_tr<td |
80 | !!$table_tr<td class="tt wims_code_words">\function{F=int(t^2+3*t+1,t=1..x)} |
81 | !! </td><td>\F will the antiderivative of x^2+3*x+1 with g(1)=0 |
81 | !! </td><td>\F will the antiderivative of x^2+3*x+1 with g(1)=0 |
82 | </td></tr> |
82 | </td></tr> |
83 | $table_tr<td |
83 | $table_tr<td class="tt wims_code_words">\real{a=int(t^2+3*t+1,t=0..1)} |
84 | </td><td>\a will the numerical integral of x^2+3*x+1 from 0 to 1 |
84 | </td><td>\a will the numerical integral of x^2+3*x+1 from 0 to 1 |
85 | </td></tr> |
85 | </td></tr> |
86 | $table_tr<td |
86 | $table_tr<td class="tt wims_code_words">\text{f=htmlmath(2*x^2+3*x)} |
87 | </td><td>\f will be rendered in html as: 2x<sup>2</sup>+3x |
87 | </td><td>\f will be rendered in html as: 2x<sup>2</sup>+3x |
88 | </td></tr> |
88 | </td></tr> |
89 | $table_tr<td |
89 | $table_tr<td class="tt wims_code_words">\text{f=texmath(2*x^2+3*x)} |
90 | </td><td>\f will be the TeX source for the expression. |
90 | </td><td>\f will be the TeX source for the expression. |
91 | </td></tr> |
91 | </td></tr> |
92 | $table_tr<td |
92 | $table_tr<td class="tt wims_code_words">\integer{n=items(a,b,c,d,e,f)} |
93 | </td><td>\n will be the number of items (here it is 6) in the list |
93 | </td><td>\n will be the number of items (here it is 6) in the list |
94 | {a,b,c,d,e,f} |
94 | {a,b,c,d,e,f} |
95 | </td></tr> |
95 | </td></tr> |
96 | $table_tr<td |
96 | $table_tr<td class="tt wims_code_words">\text{i=item(3,a,b,c,d,e,f)} |
97 | </td><td>\i will be the item number 3 of the list |
97 | </td><td>\i will be the item number 3 of the list |
98 | {a,b,c,d,e,f} (hence c). |
98 | {a,b,c,d,e,f} (hence c). |
99 | </td></tr> |
99 | </td></tr> |
100 | $table_tr<td |
100 | $table_tr<td class="tt wims_code_words">\text{s=shuffle(6)} |
101 | </td><td>\s will be the list of 6 integers 1,2,...,6, in random order. |
101 | </td><td>\s will be the list of 6 integers 1,2,...,6, in random order. |
102 | </td></tr> |
102 | </td></tr> |
103 | $table_tr<td |
103 | $table_tr<td class="tt wims_code_words">\text{s=shuffle(a,b,c,d,e)} |
104 | </td><td>\s will be the letters {a,b,c,d,e} in random order. |
104 | </td><td>\s will be the letters {a,b,c,d,e} in random order. |
105 | </td></tr> |
105 | </td></tr> |
106 | $table_tr<td |
106 | $table_tr<td class="tt wims_code_words">\matrix{m=1,2,3<br/>4,5,6<br/>7,8,9} |
107 | </td><td>\m will be the matrix of 3 rows and 3 columns. |
107 | </td><td>\m will be the matrix of 3 rows and 3 columns. |
108 | </td></tr> |
108 | </td></tr> |
109 | $table_tr<td |
109 | $table_tr<td class="tt wims_code_words">\text{t=asis(How do you do? item(1,2,3))} |
110 | </td><td>The string as it is, with no transformation nor conditionality. |
110 | </td><td>The string as it is, with no transformation nor conditionality. |
111 | </td></tr> |
111 | </td></tr> |
112 | $table_end |
112 | $table_end |
113 | 113 | ||
114 | Conditional parameters: You may write |
114 | Conditional parameters: You may write |