Rev 18612 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 18612 | Rev 18643 | ||
---|---|---|---|
Line 150... | Line 150... | ||
150 | var fun_x = to_js_math(funs[i]);\ |
150 | var fun_x = to_js_math(funs[i]);\ |
151 | var fun_y = to_js_math(funs[i+1]);\ |
151 | var fun_y = to_js_math(funs[i+1]);\ |
152 | if(fun_x == null || fun_y == null){alert(\"Syntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi)) \");return;};\ |
152 | if(fun_x == null || fun_y == null){alert(\"Syntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi)) \");return;};\ |
153 | try{ parseFloat( eval_jsmath( px2x(0),fun_x ) );}catch(e){alert(\"\\nSyntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi))\");return;};\ |
153 | try{ parseFloat( eval_jsmath( px2x(0),fun_x ) );}catch(e){alert(\"\\nSyntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi))\");return;};\ |
154 | ctx.lineWidth = linewidth[i] || linewidth;\ |
154 | ctx.lineWidth = linewidth[i] || linewidth;\ |
- | 155 | if(opacity[i]>1){opacity[i]=0.00392*opacity[i];}\ |
|
155 | ctx. |
156 | ctx.strokeStyle = \"rgba(\"+color[i]+\",\"+opacity[i]+\")\";\ |
156 | if(use_dashed[i] == \"1\" || use_dashed == \"1\"){if(ctx.setLineDash){ctx.setLineDash([dashtype0,dashtype1]);}else{ctx.mozDash =[dashtype0,dashtype1];}};\ |
157 | if(use_dashed[i] == \"1\" || use_dashed == \"1\"){if(ctx.setLineDash){ctx.setLineDash([dashtype0,dashtype1]);}else{ctx.mozDash =[dashtype0,dashtype1];}};\ |
157 | var y1;var x1;var y2;var x2;\ |
158 | var y1;var x1;var y2;var x2;\ |
158 | ctx.beginPath();\ |
159 | ctx.beginPath();\ |
159 | var tmin = trange[0];var tmax = trange[1];\ |
160 | var tmin = trange[0];var tmax = trange[1];\ |
160 | var step = parseFloat((tmax - tmin)/plotsteps);\ |
161 | var step = parseFloat((tmax - tmin)/plotsteps);\ |
Line 178... | Line 179... | ||
178 | var fun = to_js_math(funs[i]);\ |
179 | var fun = to_js_math(funs[i]);\ |
179 | if(fun == null){alert(\"Syntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi)) \");return;};\ |
180 | if(fun == null){alert(\"Syntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi)) \");return;};\ |
180 | try{ parseFloat( eval_jsmath( px2x(0),fun ) );}catch(e){alert(\"\\nSyntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi))\");return;};\ |
181 | try{ parseFloat( eval_jsmath( px2x(0),fun ) );}catch(e){alert(\"\\nSyntax Error...\\nAttention : try use very precise notation !\\nlike :\\n6*(0.25)^(1.23)\\n1/(sin(5*x))\\n(3*x+4)/(x^(2*pi))\");return;};\ |
181 | if(use_dashed[i] == \"1\" || use_dashed == \"1\"){if(ctx.setLineDash){ctx.setLineDash([dashtype0,dashtype1]);}else{ctx.mozDash =[dashtype0,dashtype1];}};\ |
182 | if(use_dashed[i] == \"1\" || use_dashed == \"1\"){if(ctx.setLineDash){ctx.setLineDash([dashtype0,dashtype1]);}else{ctx.mozDash =[dashtype0,dashtype1];}};\ |
182 | ctx.lineWidth = linewidth[i] || linewidth;\ |
183 | ctx.lineWidth = linewidth[i] || linewidth;\ |
- | 184 | if(opacity[i]>1){opacity[i]=0.00392*opacity[i];}\ |
|
183 | ctx.strokeStyle='rgba('+color[i] |
185 | ctx.strokeStyle='rgba('+color[i] +','+opacity[i] +')';\ |
184 | var y1;var x1;var y2;var x2;\ |
186 | var y1;var x1;var y2;var x2;\ |
185 | ctx.beginPath();\ |
187 | ctx.beginPath();\ |
186 | for(var p = 0 ; p<xsize;p++){\ |
188 | for(var p = 0 ; p<xsize;p++){\ |
187 | x1 = px2x(p);\ |
189 | x1 = px2x(p);\ |
188 | y1 = y2px(parseFloat(eval_jsmath(x1,fun)));\ |
190 | y1 = y2px(parseFloat(eval_jsmath(x1,fun)));\ |