Rev 16458 | Blame | Compare with Previous | Last modification | View Log | RSS feed
\def{text tab1=slib(function/tabsignes [[x,-Inf,,+Inf;f(x),,+,]])}
\def{text tab2=slib(function/tabsignes [[x,-Inf,,x_S,,+Inf;f(x),,+,0,+]])}
\def{text tab3=slib(function/tabsignes [[x,-Inf,,x_1,,x_2,,+Inf;f(x),,+,0,-,0,+]])}
\def{text tab4=slib(function/tabsignes [[x,-Inf,,+Inf;f(x),,-,]])}
\def{text tab5=slib(function/tabsignes [[x,-Inf,,x_S,,+Inf;f(x),,-,0,-]])}
\def{text tab6=slib(function/tabsignes [[x,-Inf,,x_2,,x_1,,+Inf;f(x),,-,0,+,0,-]])}
<p>TrinĂ´me \(f(x)=a*x^2+b*x+c) avec \(a \ne 0),
\(\Delta=b^2-4 a c),
\(f(x) = a (x - x_S)^2 + y_S) avec \(x_S=\frac{-b}{2a}) et \(y_S=f(x_S))</p>
<table class="wimscenter">
<tr><td></td><td>\(\Delta \lt 0)</td>
<td>\(\Delta = 0)</td><td>\(\Delta \gt 0)</td></tr>
<tr><td>\(a \gt 0)</td>
<td>\draw{200,200}{
xrange -2,8
yrange -2,8
arrow -2,0,8,0,8, black
arrow 0,-2,0,8,8, black
dline 0,1,3,1,red
dline 3,0,3,1,red
text red,2.9,-0.1 , large, x
text red,3.4,-0.5, small, S
text red,-1,1.5, large,y
text red,-0.5,1, small, S
plot black,(x-3)^2+1
text black,1.7,4.5, large, f
}
<br>cas 1<br> \tab1
</td><td>
\draw{200,200}{
xrange -2,8
yrange -2,8
arrow -2,0,8,0,8, black
text red,2.9,-0.1,large,x
text red,3.4,-0.5,small,S
plot black, (x-3)^2
text black1.7,4.5, large, f
}
<br>cas 2<br>\tab2
</td><td>
\draw{200,200}{
xrange -2,8
yrange -5,5
arrow -2,0,8,0,8, black
arrow 0,-5,0,5,8, black
dline 0,-2,3,-2,red
dline 3,0,3,-2,red
text red,2.9,1,large, x
text red,3.4,0.6,small, S
text red,1.1,-0.1,large, x
text red,1.6,-0.6,small, 1
text red,4.5,-0.1,large, x
text red,5,-0.6,small, 2
text red,-1,-1.5,large,y
text red,-0.5,-2,small, S
plot black, (x-3)^2-2
text black,1.7,1.5,large, f
}
<br>cas 3<br>\tab3
</td></tr>
<tr><td>\(a \lt 0)</td><td>
\draw{200,200}{
xrange -2,8
yrange -8,2
arrow -2,0,8,0,8, black
arrow 0,-8,0,2,8, black
dline 0,-1,3,-1,red
dline 3,0,3,-1,red
text red, 2.9,1 , large, x
text red, 3.4,0.6, small, S
text red, -1,-0.5, large,y
text red, -0.5,-1, small, S
plot black, -(x-3)^2-1
text black, 1.7,-4.5, large, f
}<br>\tab4<br>cas 4
</td><td>
\draw{200,200}{
xrange -2,8
yrange -8,2
arrow -2,0,8,0,8, black
text red, 2.9,1 , large, x
text red, 3.4,0.6, small, S
plot black, -(x-3)^2
text black, 1.7,-4.5, large, f
}
<br>\tab5<br>cas 5
</td><td>
\draw{200,200}{
xrange -2,8
yrange -5,5
arrow -2,0,8,0,8, black
arrow 0,-5,0,5,8, black
dline 0,2,3,2,red
dline 3,0,3,2,red
text red, 2.9,-0.1, large, x
text red, 3.4,-0.6, small, S
text red, 1.6,-0.1 , large, x
text red, 2.1,-0.6, small, 2
text red, 4,-0.1 , large, x
text red, 4.5,-0.6, small, 1
text red, -1,2.5, large,y
text red, -0.5,2, small, S
plot black, -(x-3)^2+2
text black, 1.7,-1.5, large, f
}
<br>\tab6<br>cas 6
</td>
</tr>
<tr><td>Racines<br>Solutions de<br>\(f(x) = 0)</td><td>Pas de racine.</td><td>\(x_S = x_1 = x_2 = \frac{-b}{2 a})</td><td>\(x_1=\frac{-b-\sqrt{\Delta}}{2 a}) et \(x_2=\frac{-b+\sqrt{\Delta}}{2 a})</td></tr>
<tr><td>Factorisation</td><td>Pas de factorisation</td><td>\(f(x) = a (x - x_S)^2)</td><td>\(f(x) = a (x - x_1) (x - x_2))</td></tr>
</table>