Rev 16462 | Blame | Compare with Previous | Last modification | View Log | RSS feed
!set titb=Obtenir la forme canonique à partir de la forme développée
!set keyw=
!set datm=20210501
!set prev=
!set next=
!set upbl=
!set dat1=19000101
!set dat2=24000101
!if $wims_read_parm!=$empty
!goto $wims_read_parm
!endif
!exit
:content
!set tmp0=!randitem -1,1
!set tmp1=!randitem 2,3,4,5
!set m_a=$[rint($(tmp0)*$(tmp1))]
!set tmp0=!randitem -1,1
!set tmp1=!randitem 2,3,4,5
!set m_b=$[rint($(tmp0)*$(tmp1))]
!set tmp0=!randitem -1,1
!set tmp1=!randitem 2,3,4,5
!set m_c=$[rint($(tmp0)*$(tmp1))]
!set t_=!rawmath $m_b/$m_a
!set m_b1=!exec pari print($t_)
!set t_=!rawmath $m_b1/2
!set m_b2=!exec pari print($t_)
!set t_=!rawmath $m_b2*$m_b2
!set m_b3=!exec pari print($t_)
!set t_=!rawmath $m_c-$m_a*$m_b3
!set m_c1=!exec pari print($t_)
<p class="wimscenter">
!insmath f(x) = \a*x^2 + \b*x + \c
<br>
!insmath f(x) = \a*(x^2 + \b1*x) + \c
<br>
!insmath f(x) = \a*(x^2 + 2*(\b2*x)) + \c
</p>
Or
!insmath x^2 + 2*(\b2*x)
est le début du développement de
!insmath (x + \b2)^2 = x^2 + 2*(\b2*x) + \b3
.
On introduit donc $m_b3 pour compléter l'expression en l'ajoutant et en le retranchant :
<p class="wimscenter">
!insmath \begin{matrix} f(x) &=& \a*(x^2 + 2*(\b2*x) + \b3 - \b3) + \c\\ f(x) &=& \a*(x^2 + 2*(\b2*x) + \b3) - \a*\b3 + \c\\ f(x) &=& \a*(x + \b2)^2 + \c1 \end{matrix}
</p>
On a ainsi obtenu la forme canonique de
!insmath f(x)
.