Rev 3674 | Blame | Compare with Previous | Last modification | View Log | RSS feed
<p>
<a name="matrice_colonne"></a>
<a name="matrice_ligne"></a>
<a name="matrice_carree"></a>
An \m×\n A matrix is a <em>line matrix</em> if \m=1,
or <em>column matrix</em> if \n=1. A is a <em>square matrix</em> if
\m=\n.
<a name="diagonale"></a>
IN a matrix A=(\a<sub>\i\j</sub>), the coefficients \a<sub>11</sub>,
\a<sub>22</sub>, \a<sub>33</sub> ... are <em>diagonal</em> coefficients.
The matrix A is a <em>diagonal</em> matrix if all its non-diagonal coefficients are zero.
<a name="triangulaire"></a>
The matrix A=(\a<sub>\i\j</sub>) is <em>upper-triangular</em>
(resp. <em>lower-triangular</em>) if all its coefficients below (resp. above)
the diagonal are zero, that is, \a<sub>\i\j</sub> = 0 if \i > \j
(resp. if \i < \j).
<a name="trace"></a>
The <em>trace</em> of a matrix A=(\a<sub>\i\j</sub>) of dimension \m×\n
is the sum of diagonal coefficients:
<div class="wimscenter">
trace(A) = \(\sum_{i=1}^{\min(m,n)}a_{ii})
</div>
<b>Remark</b>. Although the definitions of diagonal, trangular and trace are
valid for matrices of arbitrary dimensions, in general they are interesting
only for square matrices.
Generated by GNU Enscript 1.6.5.90.