Subversion Repositories wimsdev

Rev

Rev 6065 | Blame | Compare with Previous | Last modification | View Log | RSS feed

<div class="wimsbody">
<h1>
The logo of WIMS
</h1>
<p>
<img src="gifs/logo-160.gif" align="middle" alt="logo">

<p>The curve represents the trace of a point on a disk of radius 1 rotating
inside a fixed circle of radius 3. And the deformation of the curve
represents what happens when the distance of the point towards the center of
the moving disk varies from 0 to infinity.
 </p><p>
 This animated logo is created by the application
!href module=tool/geometry/animtrace Tracés animés
 under Wims.
</p>
<ul>
 <li>
Type of plotting: parametric curve in 2D.
 </li><li>
Equations:
<pre>
     x=(1-s)*cos(t+pi*s)+s*cos(2*t)
     y=(1-s)*sin(t+pi*s)-s*sin(2*t)
</pre>
  (where s is the ``sequentiel parameter'' as defined in
  <span class="wims_emph">Tracés animés</span>.)
</li><li>
Ranges of variables:
<pre>-1&lt;x&lt;1, -1&lt;y&lt;1, 0&lt;t&lt;2*pi.</pre>
</li>
</ul>
<p>
You may
!href module=tool/geometry/animtrace.en&cmd=new&type=parametric2D&x1=(1-s)*cos(t+pi*s)+s*cos(2*t)&y1=(1-s)*sin(t+pi*s)-s*sin(2*t)&tleft=0&tright=2*pi&xleft=-1&xright=1&yleft=-1&yright=1&special_parm=noshow load directly these settings
 into the menu of <span class="wims_emph">Tracés animés</span>
to plot it yourself.
<p class="wimstech">
Date of creation 03-27-1998, &copy; XIAO, Gang.
 </p>
 <hr>
 <p class="wimscenter">
!href module=home Back to wims
 </p>
</div>