Rev 2071 | Blame | Compare with Previous | Last modification | View Log | RSS feed
!goto $wims_read_parm
:def
title=Parametric to implicit curve 2D
synonyme=implicite equation 2d, 2d implicite equation, parametric to implicit 2D, implicit equation of a plane curve
input=list
!exit
:proc
formula=!nonempty item $formula
cnt=!itemcnt $formula
!if $cnt!=2
error=bad_formula
!exit
!endif
v1=!varlist nofn $formula
v2=!varlist $formula
n1=!itemcnt $v1
n2=!itemcnt $v2
!if $n2>$n1 or . isin $formula
result=not_polynomial
!exit
!endif
!if $n1<1
result=no_parameter
!exit
!endif
w1=!item 1 of $v1
fml=$formula
!if t notitemof $v1
fml=!mathsubst $w1=t in $fml
!endif
!distribute items $fml into fx,fy
!distribute items $formula into Fx,Fy
m2_header=implicit2d = (f1,f2) -> (\
-- f1 and f2 should be polynomials over QQ in a variable\
-- t. A string representation of the polynomial\
-- F(x,y) is returned, where F(f1,f2) = 0.\
R = QQ[t,x,y,h,MonomialSize=>16,MonomialOrder=>Eliminate 1];\
f = value f1;\
g = value f2;\
J = ideal(x-f,y-g);\
Jh = homogenize(J,h);\
M = selectInSubring(1,gens gb Jh);\
toString substitute(M_(0,0), {h=>1}))
result=!exec m2 implicit2d("$fx","$fy")
result=!translate # to $\
$ in $result
# Here I just discard the first two words of the result
result=!word 3 to -1 of $result
!exit
:output
!if $result=not_polynomial
Sorry, we can only compute equations when the parametric functions are
polynomials of rational coefficients.
!exit
!endif
!if $result=no_parameter
Sorry, but are you sure that you have entered two polynomials of parameter
t as the parametric coordinate functions?
!exit
!endif
The plane curve defined by the parametric equations
<p><center>
!htmlmath x = $Fx , y = $Fy
<p></center>
satisfies the implicit equation
<p><center>
!insmath $result = 0 .
</center> <p>
<small>Computation done by Macaulay 2</small>
!exit