<p
><center
><h2
>Complete
list of parameter functions
</h2
></center
>
<p>$table_header
<caption>Randomization</caption>
$table_tr<th>Function</th><th>Effect</th></tr>
$table_tr<td><tt>random(-5..5)</tt>
</td><td>a random number between -5 and 5</td></tr>
$table_tr<td><tt>randint(-5..5)</tt>
</td><td>a random integer between -5 and 5 (inclusive)</td></tr>
$table_tr<td><tt>random(1,2,3,a,b,c)</tt>
</td><td>a random item within {1,2,3,a,b,c}</td></tr>
</td
><td
>a
list of
6 integers
1,2,...,6, in a random order
.</td
></tr
>
$table_tr<td
><tt
>shuffle(a
,b
,c
,d
,e
)</tt
>
</td
><td
>the
list of letters
{a
,b
,c
,d
,e
}, in a random order
.</td
></tr
>
$table_tr<td
><tt
>randomitem
(\
list)</tt
>
</td
><td
>a random item of
(comma
-separated
) \
list.</td
></tr
>
$table_tr<td><tt>randomrow(\mat)</tt>
</td><td>a random row of the matrix \mat.
$table_end
<p>$table_header
<caption
>Data and
list manipulation
</caption
>
$table_tr<td><tt>items(a,b,c,d,e,f)</tt>
</td><td>the number of items (here it's 6) in the list
{a,b,c,d,e,f}</td></tr>
$table_tr<td><tt>item(3,a,b,c,d,e,f)</tt>
</td><td>item number 3 of the list {a,b,c,d,e,f} (hence c)</td></tr>
$table_tr<td><tt>item(3,\ll)</tt>
</td><td>item number 3 of the list \ll (same as <tt>\ll[3]</tt>)</td></tr>
$table_tr<td><tt>item(2..5,a,b,c,d,e,f)</tt>
</td><td>items number 2 to 5 of the list {a,b,c,d,e,f} (hence b,c,d,e)</td></tr>
$table_tr<td><tt>item([2,4],\ll)</tt>
</td><td>items number 2 and 4 of the list \ll (same as
<tt>\ll[2,4]</tt>)</td></tr>
$table_tr<td><tt>position(make,do,go,make,take)</tt>
</td><td>number of position of the item `make' in the
list
{do,go,make,take} (hence 3)</td></tr>
$table_tr<td><tt>rows(\m)</tt>
</td><td>the number of rows in the matrix \m</td></tr>
$table_tr<td><tt>row(2,\m)</tt>
</td><td>row number 2 of the matrix \m (same as <tt>\m[2;]</tt>)</td></tr>
$table_tr<td><tt>row(2..5,\m)</tt>
</td><td>the submatrix of \m consisting of rows number 2 to 5
(same as <tt>\m[2..5;]</tt>)</td></tr>
$table_tr<td><tt>row([1,3],1,2,3<br>3,4,5<br>5,6,7)
</td><td>the submatrix of the 3×3 matrix consisting of the first
and the last rows</td></tr>
$table_tr<td><tt>row(column 1 > 1 and column 2 = good,\mat)</tt>
</td><td>the submatrix of \mat consisting of rows where column 1 is > 1 and
column 2 is the word `good'</td></tr>
$table_tr<td><tt>randomitem(\list)</tt>
</td><td>a random item of (comma-separated) \list.</td></tr>
$table_tr<td><tt>randomrow(\mat)</tt>
</td><td>a random row of the matrix \mat.</td></tr>
$table_tr<td><tt>column(2,\m)</tt>
</td><td>items of column number 2 of the matrix \m,
as a comma-separated list (same as <tt>\m[;2]</tt>)</td></tr>
$table_tr<td><tt>column(2..5,\m)</tt>
</td><td>the submatrix of \m consisting of columns number 2 to 5
(same as <tt>\m[;2..5]</tt>)</td></tr>
$table_tr<td><tt>column([1,3],1,2,3<br>3,4,5<br>5,6,7)
</td><td>the submatrix of the 3×3 matrix consisting of the first
and the last columns</td></tr>
$table_tr<td><tt>asis(How do you do? item(1,2,3))</tt>
</td><td>the string as it is, protected from transformations and conditionality.
$table_end<p>$table_header
<caption>Mathematical functions</caption></td></tr>
$table_tr<td><tt>evalue(x^2+sin(y),x=3,y=4)</tt>
</td><td>evaluation of the function x^2+sin(y),<br>
for x=3, y=4</td></tr>
$table_tr<td><tt>solve(x^3-3*x+1,x=0..1)</tt>
</td><td>the simple root of x^3-3x+1 between 0 and 1</td></tr>
$table_tr<td><tt>simplify(x^5*y^3*x^2/y)</tt>
</td><td>simplified expression: x<sup>7</sup>y<sup>2</sup></td></tr>
$table_tr<td><tt>diff(sin(x)+cos(y),x)</tt>
</td><td>the derivative of sin(x)+cos(y) with respect to x</td></tr>
$table_tr<td><tt>int(x^2+3*x+1,x)</tt>
</td><td>anti-derivative of x^2+3*x+1,<br>
the constant term being undertermined</td></tr>
!!$table_tr<td><tt>int(t^2+3*t+1,t=1..x)
!! <td>the anti-derivative g of x^2+3*x+1 such that g(1)=0
$table_tr<td><tt>int(t^2+3*t+1,t=0..1)
</td><td>the numerical integration of x^2+3*x+1, from 0 to 1</td></tr>
$table_tr<td><tt>det(\mat)</tt>
</td><td>determinant of the matrix \mat</td></tr>
$table_tr<td><tt>htmlmath(2*x^2+3*x)</tt>
</td><td>the best possible way to render the expression<br>
in html way: 2x<sup>2</sup>+3x</td></tr>
$table_tr<td><tt>texmath(2*x^2+3*x)</tt>
</td><td>the TeX source of the expression</td></tr>
$table_end<p>$table_header
<caption>Advanced facilities</caption>
$table_tr<td><tt>pari(factor(2^101-1))</tt>
</td><td>call PARI/GP: here to factor an integer</td></tr>
$table_tr<td><tt>maxima(integrate(x^2+1,x);)</tt>
</td><td>call Maxima: here to integrate a function</td></tr>
$table_tr<td><tt>yacas(Taylor(x,0,10) cos(x^2+x+1))</tt>
</td><td>call Yacas: here to compute a Taylor expansion</td></tr>
$table_tr<td><tt>wims(sort items \list)</tt>
</td><td>use wims !sort command to sort items in the list \list</td></tr>
$table_tr<td><tt>wims(listintersect \list1 and \list2)</tt>
</td><td>use wims !listintersect command to get the common items of
\list1 and \list2</td></tr>
$table_tr<td><tt>draw(pixel_size_x,pixel_size_y<br>draw_source)</tt>
</td><td>draw a picture, the source is the same as in <tt>\draw</tt>,
with the image size as the first line.
The output is an image URL.</td></tr>
$table_tr<td><tt>slib(matrix/invertible 3,5)</tt>
</td><td>Read
!href module=help/wimsdoc&subject=slib#slib WIMS slib
matrix/invertible to generate an invertible 3x3
matrix of range 5.</td></tr>
$table_end
<p>
Available types of parameters: integer, real, rational, complex, function, text, matrix.
<p>