Rev 20 | Rev 4161 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
!if $wims_read_parm!=slib_header
!goto proc
!endif
slib_title=Generation of multinomial random data
slib_parms=3\
1,m\
,n\
,[p1,p2, .. pj]
slib_author=Sophie Lemaire et Bernadette PERRIN-RIOU
slib_out=random data of m integers following a multinomial law of parameters n and p=[p_1,...,p_j] (n is an integer and p_i are positive reals of sum <= 1; if the sum of the p_i is less than 1, 1-sum(p_i) is add to the list.
slib_comment= P(X1=k1,X2=k2,..)=n!/(k1!k2!..)*p1^k1*p2^(k2)... In fact, it is preferable to enter only n-1 p_i because of the tuncature errors : the last one will be add.
slib_example=3,6,[1/3,1/3]
!exit
:proc
!distribute item $wims_read_parm into slib_M, slib_nn
slib_q=!item 3 to -1 of $wims_read_parm
!default slib_M=1
slib_q=!declosing $slib_q
slib_t=!itemcnt $slib_q
slib_s=!sum x for x in $slib_q
!if $slib_s>1
!exit
!endif
!if $slib_s>0 and $slib_s<1
slib_q=$slib_q, $[1-$slib_s]
!advance slib_t
!endif
slib_mult=
!for slib_r=1 to $slib_M
slib_s=1
slib_N=$slib_nn
slib_V=
!for slib_i=1 to $[$slib_t-1]
slib_j=!item $slib_i of $slib_q
!readproc slib/stat/binomial 1,$slib_N, $[$slib_j/$slib_s]
slib_V=!append item $slib_out to $slib_V
!distribute item $[$slib_s-$slib_j], $[$slib_N-$slib_out] into slib_s,slib_N
!next slib_i
slib_V=!append item $slib_N to $slib_V
slib_mult=!append line $slib_V to $slib_mult
!next slib_r
slib_out=!nonempty line $slib_mult
slib_out=!trim $slib_out